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Motivation – Wikipedia in multiple languages
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Wikipedia in French and English

Shouldn’t they be similar?

Gij =

{
1+ : if topic-group i links to topic-group j
0 : otherwise.

3



Generic Problem Statement

Clustering of multiple graphs

Let (κ(1),G1), . . . , (κ(T ),GT ) be an (independent) sequence of
pairs of a class label κ(t) and a (potentially weighted) graph Gt on
n vertices. We assume that the class label κ(t) takes values in
{1, . . . ,K} and also that given κ(t) = k, each Gt is a random
graph on n vertices whose distribution depends only on the value
of k. Given G = {Gt}Tt=1, what is κ̂(t) for each t = 1, . . . ,T?

I vertex id matched across graphs (?)

I num of vertices are the same across graphs (?)
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Matrix Factorization Assumption

Noiseless Case
Consider graphs G (1),G (2),G (3) and G (4) on 2 nodes such that
G (1) = G (3) = A and G (2) = G (4) = B, where

A =

(
0 2
1 0

)
and B =

(
0 5
4 0

)
Then,

0 0 0 0
1 4 1 4
2 5 2 5
0 0 0 0


︸ ︷︷ ︸

X

=


0 0

1/3 4/9
2/3 5/9

0 0


︸ ︷︷ ︸

W

(
1 0 1 0
0 1 0 1

)
︸ ︷︷ ︸

H


3 0 0 0
0 9 0 0
0 0 3 0
0 0 0 9


︸ ︷︷ ︸

Λ
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Matrix Factorization Assumption

Noiseless Case
0 0 0 0
8 1 8 1
1 8 1 8
0 0 0 0


︸ ︷︷ ︸

X

=


0 0

8/9 1/9
1/9 8/9

0 0


︸ ︷︷ ︸

W

(
1 0 1 0
0 1 0 1

)
︸ ︷︷ ︸

H


9 0 0 0
0 9 0 0
0 0 9 0
0 0 0 9


︸ ︷︷ ︸

Λ

Interpretation
I for t = 1, 3, there were 9 interaction events, where 100

percent of them is of type A′, and each of event is for 2→ 1
with probability 8/9 and is for 1→ 2 with probability 1/9

I for t = 2, 4, there were 9 interaction events, where 100
percent of them is of type B ′, and each of event is for 2→ 1
with probability 1/9 and is for 1→ 2 with probability 8/9
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Matrix Factorization Assumption

Poisson Noise Case
Consider graphs G (1),G (2),G (3) and G (4) on 2 nodes such that
X = E[X ] and (Xij) are independent Poisson random variables,
where

X =


W11 W12

W21 W22

W31 W32

W41 W42


︸ ︷︷ ︸

W

(
H11 H12 H13 H14

H21 H22 H23 H24

)
︸ ︷︷ ︸

H︸ ︷︷ ︸
P


Λ11 0 0 0

0 Λ22 0 0

0 0 Λ33 0

0 0 0 Λ44


︸ ︷︷ ︸

Λ

with 1>W = 1> and 1>H = 1>.
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Matrix Factorization Assumption

Wikipedia pages in two languages

1. Λ`` = Λ``(τ), the number of edges observed for the `th
language by time τ

2. Treat Λ as a nuisance parameter – two Wikigraphs might be
evolving on different time scales

Inference on the inner dimension d

1. if W and H are n2 × 1 and 1× 2 matrices, i.e., (d = 1), then
two Wikipedia graphs are noisy obs. of the “same” kind

2. if W and H are n2 × 2 and 2× 2 matrices, i.e., (d = 2), then
two Wikipedia graphs are noisy obs. of the “different” kinds
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Matrix Factorization Assumption

Multiple graphs with recurring motifs

The collection G has d recurring motifs provided that

X = WHΛ,

where W , H and Λ are n2 × d , d × T and T × T
full “positive-rank” non-negative matrices such that 1>W = 1>,

1>H = 1> and Λ is diagonal.

1. X `,t = E[Gij(t)], where ` = i + (j − 1)n

2.
∑

ij E[Gij(t)] = E[1>G (t)1] = Λtt
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Related Works

I Elbow finding method (Zhu & Godshi)

I Core-consistency for PARAFAC tensor models (Bro & Kieffer)

I Two sample hypothesis testing procedure (Tang et al.)

I Clustering in a mixture distribution (Schiebinger et al.)
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Model Selection – estimating d , the inner dimension

NMF
Given d̂ = 1, . . . ,T ,

(Ŵ , Ĥ) := arg min
W≥0,H≥0

D(P̂;W ,H), (1)

where P̂ij ,t := Xij ,t/Nt and W has d̂ columns and H has d̂ rows.

Penalized-Loss Minimization

I AICc

11



Penalized-Loss Minimization

AICc = Loss + Penalty

AICc := −2
∑
ij ,t

P̂ij ,t log(P̂ij ,t)︸ ︷︷ ︸
Loss

+ 2
d̂∑

k=1

Ĉk − 1

N̂k︸ ︷︷ ︸
Penalty

(2)

where N̂k =
∑

t ĤktNt , and Ĉk =
∑

ij 1{Ŵij ,k > 0}.

Intuition

I An empirical estimate of entropy –
1
Nt

∑
ij Xij ,t log(P̂ij ,t) = 1

Nt

∑Nt
`=1

∑
ij 1Bij

(ξ`(t)) log(P̂ij) ≈
E[
∑

ij 1Bij
(ξ0(t)) log(Pij)] = E[log(pt(ξ0(t)))], where each

ξ`(t) ∼ pt independently

I Non-redundancy – Ĉk penalizes the models with
(Ŵij ,1, . . . , Ŵij ,d̂

) having too many non-zero terms for too
many ij
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Penalized-Loss Minimization

Unbiased in the limit
Under some simplifying asymptotic condition,

lim
`→∞

`
(
E[ϕ(Ŵ , Ĥ)]− ϕ(W ,H)

)
=

d∑
k=1

C k − 1

nkλk
, (3)

where the expectation is taken w.r.t. the parameter (W ,H,N),

ϕ(W ,H) := E

∑
ij ,t

(Xij ,t/Nt) log((WH)ij ,t)

 ,
C k =

∑
ij

1{W ij ,k > 0},

nkλk ≈ Nk(t)/`.
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AICc on Swimmer

Swimmer Data Set1

The swimmer data set is a frequently-tested data set for
bench-marking NMF algorithms. In our present notation, each
column of 220× 256 data matrix X is a vectorization of a binary
image, and each row corresponds to a particular pixel. Each image
is a binary images (20-by-11 pixels) of a body with four limbs
which can be each in four different positions. It is known that the
matrix X is 16-separable while the rank of X is 13.

1D. Donoho and V. Stodden. “When Does Non-Negative Matrix
Factorization Give Correct Decomposition into Parts?” In: 2003. 14



AICc on Swimmer

Swimmer Data Set
Application of our AICc criteria using nmf with option pe-nmf

with α = 0 and β = 1 yields the estimated d̂ as 16 while using nmf

with option lee yields d̂ = 18. Application of our FIC criteria
using FastConicalHull and FastSepNMF yields the estimated d̂
as 13 while using nnmf yields d̂ = 1.
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AICc vs. Others – Biologically-motivated simulation data

Table 1 : The baseline procedure “dimSelect ◦ svd” is compared
against the NMF procedure “getAICc ◦ gclust” for choosing d̂ for each
of 100 Monte Carlo simulation experiments. The true rank r is 3. For
κ = 0.5, the baseline procedure performs poorly.

d̂
λ 1 2 3 4 5 6

101 48 39 12 1 0 0
102 100 0 0 0 0 0
103 100 0 0 0 0 0
104 100 0 0 0 0 0

(a) “dimSelect ◦ svd”

d̂
λ 1 2 3 4 5 6

101 0 19 18 28 29 6
102 0 14 38 28 19 1
103 0 16 75 9 0 0
104 0 17 83 0 0 0

(b) “getAICc ◦ gclust”
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AICc vs. Others – Biologically-motivated simulation data

Figure 1 : Comparison of three approaches through ARI for the model
selection performance. The different symbols distinguish the different
levels of intensity. The different line types distinguish the different
algorithms. In all cases, our procedure either outperforms or nearly on
par with the two baseline algorithms.
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AICc on Wikigraphs

Wikigraphs

Table 3 : Do English and French Wiki-graphs represent the same
connectivity structure?

d̂ Neg. Log Likelihood Penalty AICc

1 43.05 1.52 44.57
2 41.65 4 45.65
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AICc with repeated SVT
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Figure 2 : More curves for “implied clustering ” are minimized at d̂ = 2,
i.e., 3 and 7 curves out of 9 are marked red resp. for apparent (Left) and
implied (Right) clustering. As moving from the bottom curve to the top
curve, ε assumes the different values
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AICc with Seeded Graph Matching
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Figure 3 : The number m0 of seeds can be at most the number m of
vertices in the graph. A noticeable trend is that for each m, the bigger
m0 is, the larger ARI value becomes. Another notable trend is that for
the m0 = m cases, as m gets larger, ARI becomes larger as well.
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Summary

Open Issues

Contact

I nhlee@jhu.edu
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